Природа молнии
Электрический потенциал:как возникает молния и насколько она опасна
Молния и следующие за ней раскаты грома — это одно из самых эффектных явлений природы, оно привлекало человека во все времена. Они знакомы каждому с детства, но не все понимают, почему появляется молния. Дать точного ответа не могут ученые, несмотря на научно-технический прогресс явление остается слабо изученным. Ученые знают механизм образования разных видов молнии, но в нем есть множество научно необъяснимых моментов.
Молнией называют мощный электрический искровой заряд, который формируется в атмосфере планеты. На Земле это обычно происходит во время грозы. Молнии бывают не только на Земле, но и на других планетах — Венере, Уране, Юпитере и Сатурне. У нас это яркие вспышки разного цвета, за которыми следуют раскаты грома. Чаще всего они образуются в кучево-дождевых облаках, но могут образоваться и в слоисто-дождевых, если те будут достаточно большие по объему.
В этой статье мы расскажем о молниях: какими они бывают, как появляются, чем опасны. Ты узнаешь, какие технологии человечество изобрело для защиты от молний.
Грозовые тучи невозможно перепутать с другими, они всегда темные и насыщенные по цвету.
Темный оттенок — это результат большой толщины: такие облака начинаются в километре над землей и доходят до высоты 6-7 километров. Так как на такой высоте низкая температура, вода становится кристаллами льда. Более теплый воздух поднимается вверх и тянет за собой эти кристаллики, более крупные льдинки опускаются, и они сталкиваются между собой.
Как образуется молния?
Льдинки сталкиваются и происходит то же самое, что и при трении других предметов друг о друга — они электризуются. Крупные обретают отрицательный заряд, мелкие — положительный. Разные части тучи получают разный заряд, сверху — плюс, снизу — минус.
Разница потенциалов создается не только между частями тучи, но и между ней и землей. Разница исчисляется сотнями тысяч вольт. Молния двигается быстро, но образуется она не молниеносно. Формирование — это три последовательные стадии.
Начальная
Разряд создается в той части, где больше ионов, частиц с зарядом. Ионы появляются, когда целая молекула теряет электроны или обрастает новыми. В данном случае эти частицы создаются из газов и воды, из них туча и состоит. По поводу того, что происходит дальше, у специалистов нет единого мнения.
Ряд ученых считают, что из-за разгона свободных электронов концентрация ионов становится выше. Электроны сталкиваются с молекулами нейтрального заряда, ионизируя их. Так создается заряд. Есть и другая гипотеза, согласно которой воздух ионизируется под воздействием космического излучения. В ионизированном состоянии газы проводят ток, поэтому по облаку может пройти электричество.
Средняя
Затем следует цепная реакция. По облаку проходит ток, и он нагревает воздух в его определенной части. От этого энергетически заряженных частиц становится все больше, и они создают еще больше ионов. По этой причине молния проходит очень быстро. У любой молнии есть самый мощный канал, от него отходят ответвления. Поэтому заряды похожи на зигзаг, с новой вспышкой заряд продвигается примерно на несколько десятков метров. Скорость этого мощного канала может доходить до 50 тысяч километров в секунду.
Самый мощный заряд доходит до другой части облака или до земли, но на этом все не заканчивается. Ионизированный канал пробивается электрическим разрядом, по этому каналу очень быстро проходят заряженные частицы, его ширина составляет несколько сантиметров, температура внутри достигает нескольких тысяч градусов. Эти идущие по каналу заряды — и есть молния, которую мы видим. Из-за высокой температуры мы видим молнию очень яркой, явление проходит молниеносно, но за эти мгновения успевает высвободиться очень много энергии.
Финальная
Скорость движения зарядов в канале падает, но при этом напряжение и сила тока по-прежнему высоки. На финальной стадии молния достигает какого-то объекта. Если рядом будут люди, то для них явление крайне опасно. Данная стадия длится десятые доли секунды, но она способна нанести огромный ущерб. Вопреки распространенной поговорке, молния часто бьет в одно место дважды или даже несколько раз, так как оно является завершающего точкой для самого короткого пути.
Скорость и длина молнии
В среднем молнии перемещаются на скорости около 56 тысяч км/сек. При этом грозовое атмосферное явление движется со скоростью 40 км/час. Средняя длина электрического разряда – 9,5 км.
Интересно: Интересные факты о снеге, фото и видео
Старое фото молнии в Бостоне
Интересный факт: самая длинная молния в мире зафиксирована в американском штате Оклахома – 321 км. А наиболее длительный разряд по времени наблюдали в Альпах – на протяжении 7,74 сек.
Какие бывают молнии?
Выделяют множество видов молний, главное отличие — тип формирования в зависимости от высоты. От этого параметра зависит, какой вид образуется:
- линейная типа туча-земля. Распространенный тип, образуется от разницы между зарядом в верхней и нижней части тучи. Все происходит так, как было изложено в стадиях;
- линейная земля-туча. Результат пробивания атмосферного слоя между заряженной верхушкой и низом;
- туча-туча. Формируется в гуще туч, вспышка появляется в результате столкновения полярных разрядов. Так пробивают друг друга расположенные рядом облака;
- горизонтальная, как первый тип, но не доходит до поверхности земли. Вспышки разлетаются в разные стороны. Чтобы появилась такая молния, достаточно одной тучи на ясном небе, и она будет очень мощной;
- ленточная. Необычная форма обусловлена несколькими одинаковыми каналами, которые идут параллельно сверху вниз. Предположительно причина в ветре, который физически расширяет каналы;
- пунктирная. Возникает редко, изучена слабо. Выглядит, как пунктирная линия. Вероятнее всего, причина в том, что некоторые зоны быстро остывают;
- шторовая. Запечатлеть такую на фото удалось только в 1994 году. Ее появлению сопутствует тихий, но уловимый гул. Выглядит, как широкая полоса света. В отличие от других формируется не внутри облака или под ним, а сверху;
- спрайт. Если обычные формируются на высоте примерно в 16 км, то спрайт гораздо выше — в 50-130 км над землей. Это заряженная холодная плазма, которая бьет из тучи вверх. Образуются при очень сильной грозе сразу по несколько штук, длится не более сотни миллисекунд, длина вспышек достигает 60 км, диаметр — 100 км;
- эльф. Такое название дали вспышкам конусообразной формы, обладают красноватым оттенком. Появляются в верхних слоях, длятся три миллисекунды, в высоту достигают сотни километров;
- джет. Синие молнии трубчато-конусной формы. Живут немного дольше относительно эльфов;
- вулканическая. Формируются при извержении вулкана, скорей всего действие обусловлено электрическим зарядом в лаве и пепле;
- Огни Святого Эльма. Формально это не молния, а разряд, созданных на заостренных вершинах: макушках деревьев, горах, башнях и других. Причина появления в большой напряженности электрического поля. Так бывает в грозу или во время метели;
- шаровая. Это круглые сгустки плазмы, они плывут прямо по воздуху. Как именно формируется шаровая молния, ученые не знают. Известно лишь то, что ведут себя такие молнии очень непредсказуемое. Кстати, некоторые деятели науки до сих пор не верят в их существование.
Как защищают оборудование от молнии?
Нужно понимать, что защиты от прямого попадания молнии в оборудование не существует. Речь идет о грозозащите – это специальное оснащение, которое позволяет обезопасить технику от повреждений, возникающих из-за грозы. Также оборудуют громоотводы и защищают оборудование от перенапряжения.
Грозозащита
Главная цель грозозащиты – защитить оборудование от статического электричества. У него имеется определенный показатель защиты, обозначаемый как ESD Protection. Этот показатель измеряется в киловольтах и указывается в виде числовой величины.
Стандарт грозозащиты – 15-20 кВ. Она представляет собой диодный мостик. При обнаружении в проводах разницы напряжения в 6 В и более, срабатывает защитный диод, который заземляет провода.
Какие самые опасные?
В разных точках земли люди видят молнии более или менее часто. Где-то очень часто, к примеру, в Венесуэле есть одно необычное местечко, где молнии формируются и вспыхивают непрерывно в любой день и любое время года. Пик приходится на период с мая по ноябрь, за год на каждый квадратный километр приходится 250 молний.
Насколько молния будет опасной для человека, зависит от того, достигнет она земли или нет. Огни Святого Эльма и те заряды, которые бьют по облакам или над ними, безопасны.
Природа молнии. Что такое молния и как она возникает?
Молния во время грозы
Когда в электрическом поле атмосферы развивается искровой разряд гигантских размеров, мы можем наблюдать удивительное природное явление – молнию. Самое зрелищное проявление грозы может быть крайне опасным для человеческой жизни и эксплуатируемой человеком инфраструктуры. Количество гроз на нашей планете в год превышает десять миллионов. В среднем на Земле происходит до полусотни тысяч гроз в день, одновременно – более тысячи. Грозы над мировым океаном случаются в разы чаще, чем над сушей. Каждую секунду десятки молний ударяют в поверхность Земли. Притом их частоту и динамику развития невозможно точно спрогнозировать, как нельзя со стопроцентной вероятностью предсказать и последствия грозовой активности.
Благодаря современным техническим средствам удалось зафиксировать появление молний на других планетах солнечной системы, в частности на Юпитере. Что касается Земли, на экваториальную и тропическую зону приходится абсолютное большинство всех гроз. А вероятность появления молнии над полюсами нашей планеты стремится к нулю. В России наибольшая грозовая активность наблюдается в южных регионах. Грозозащита прежде всего требуется там, где велика вероятность проявления сил стихии.
Разряд молнии во время грозы подобен электрическому взрыву. А впечатляющие звуковые и световые эффекты зачастую сопровождаются резким усилением ветра, выпадением града и ливнем. Сила тока молнии может составлять сотни тысяч ампер, напряжение – до миллиарда вольт. Ее протяженность достигает сотен километров, скорость – сотен тысяч километров в секунду, длительность – нескольких секунд, а температура – десятков тысяч градусов. Интенсивность разрядов в среднем составляет полсотни в секунду. Скорость движения грозы составляет десятки километров в час, размеры – от нескольких километров до пары десятков. Зрелое грозовое облако может иметь биполярную или более сложную структуру распределения зарядов. Количество разрядов молнии и их параметры связаны с величиной заряда и с тем, как он распределен в облаке. На количество также влияет скорость, с которой воспроизводится заряд.
Грозовые облака, которые могут достигать в диаметре нескольких километров, образуются в результате мощных атмосферных процессов и отличаются вертикальным развитием. Их формируют воздушные потоки, насыщенные парами воды. В электрическом поле облака запасается энергия – грозовое электричество.
Первая и вторая стадии развития грозового облака – кучевое и зрелое – завершаются стадией распада. Развитие грозы запускается при появлении конвекции. Потоки влажного воздуха движутся вверх, притом влага находится частично в жидком состоянии, а частично – виде льдинок. Величина и мощность потоков определяют тип грозы и цикл жизни грозового облака. Одноячейковое кучево-дождевое облако отличается небольшим сроком жизни – не более часа, — и быстро исчезает после грозы, которую вызвало. Более распространенные многоячейковые кластерные грозы возникают, когда грозовые ячейки на разных стадиях развития собираются в группу, или кластер, и движутся как единое целое. Такая гроза длится уже несколько часов, сопровождаясь градом, ливнем и порывами ветра. Многоячейковая линейная гроза напоминает темную стену, закрывающую горизонт. Этой опасной для авиации грозе, которую также называют “линия шквалов”, сопутствуют мощные нисходящие потоки воздуха, сильный ливень и крупный град. Суперъячейковая гроза получила свое название благодаря гигантскому размеру грозовой ячейки. Помимо сильнейшего града и шквала для нее характерны разрушительные смерчи.
История изучения молнии
Изучение грозовой активности и, в частности, молнии, неразрывно связаны с темой электричества и его проявлений в пространстве около земного шара. Совокупность проявлений атмосферного электричества исследует физика атмосферы. Предметом ее изучения выступает целый спектр связанных между собой электрических явлений: ионизация и проводимость атмосферы, электрическое поле и токи, электрические заряды и разряды. Прорыв в этой области совершил в 18 веке видный американский деятель из научной и политической областей, Бенджамин Франклин.
Благодаря экспериментам он выяснил, что молния имеет электрическую природу, и определил понятия положительного и отрицательного заряда. В 1752 году Франклин впервые предложил проект молниеотвода на основе металлического стержня, соединенного с землей. Ключевые принципы, открытые ученым, по сей день актуальны в деле устройства молниезащиты зданий и сооружений.
Тогда же российский ученый и естествоиспытатель Михаил Васильевич Ломоносов объяснил природу грозовых облаков, высказав гипотезу о причинах их электризации. Свою научную теорию он изложил в работе «Слово о явлениях воздушных, от электрической силы происходящих».
Оба исследователя, Ломоносов и Франклин, использовали в своих экспериментах воздушного змея, запуская его в направлении грозовых облаков. Соратник Ломоносова, Георг Вильгельм Рихман, погиб во время грозы, проводя электрические опыты.
Тем не менее, незадолго до этого академики успели совместно положить начало серьезному изучению молниезащиты в России. В 1753 году Ломоносов и Рихман создали первые в России прототипы молниеотводов. Также Рихман начал исследования взаимодействия электрически заряженных тел. Этот вопрос занимал многих видных ученых, среди которых были Франц Эпинус, Даниил Бернулли, Джозеф Пристли, Джон Робинсон и Генри Кавендиш.
Электрическая искра, или искровой разряд, представляет собой пучок заполненных плазмой каналов. Искровые каналы представляют собой разветвленные яркие полоски, напоминающие нити. Такой разряд в природе и является молнией. Впервые искусственным путем электрическая искра была получена в электрическом конденсаторе голландского ученого Питера ван Мушенбрука в 1745 году.
Электрический заряд, или количество электричества, как скалярная величина впервые был определен Шарлем Кулоном, физиком и инженером из Франции. Связь силы взаимодействия между неподвижными точечными электрическими зарядами и расстояния между ними была выведена им в законе Кулона в 1785 году.
Кулон как единица измерения электрического заряда определяется величиной заряда, прошедшего через проводник за 1 секунду при силе тока 1 ампер. Электрические заряды в околоземном космическом пространстве, в атмосфере и на поверхности нашей планеты генерируют поле, которое называется электрическим полем Земли. Заряд в полмиллиона кулонов создает у поверхности Земли электрическое поле напряжённостью в десятки вольт на метр.
Единица измерения электрического напряжения “вольт” получила свое название в честь Алессандро Вольты, ученого из Италии. Он создал первый химический источник тока при помощи кислоты и пластин из цинка и меди, а также ряд электрических приборов. В вольтах выражается электростатический потенциал.
Вольт обозначается как В или V. Мощность постоянного электрического тока измеряется в ваттах – единице, названной в честь изобретателя из Шотландии Джеймса Ватта. Ватт обозначается как Вт или W.
Принцип взаимодействия электрических токов был сформулирован физиком Андре -Мари Ампером в 1820 году. Французский ученый ввел в физику и само понятие электрического тока. Закон Ампера описывает состояния проводников в зависимости от направления тока. Если электрические токи в параллельных проводниках текут в одном направлении — проводники притягиваются. Если в них же токи текут в противоположных направлениях, то параллельные проводники отталкиваются.
Со временем единица измерения силы неизменяющегося электрического тока получила наименование “ампер”. Ампер обозначается как A.
Тепловое действие электрического тока сформулировал в виде закона английский физик Джеймс Джоуль. Единица измерения энергии получила название в честь этого ученого. Джоуль обозначается как Дж или J. За 1 секунду силы электрического поля при напряжении в 1 вольт для поддержания силы тока в 1 ампер совершают работу в 1 джоуль.
20 век принес человечеству знания об ионосфере и магнитосфере. А затем, с развитием космических технологий, стало возможным исследование процессов в самых высоких слоях атмосферы. Наибольший вклад в формирование современного знания об электрических атмосферных явлениях внесли Нобелевский лауреат Чарлз Вильсон и ученый-физик Яков Френкель.
Типы молний
Молнии делятся на разные типы: линейная, горизонтальная, ленточная, пунктирная, шаровая, огни святого Эльма, а также спрайты, эльфы, джеты в верхних слоях атмосферы. Причиной систематических разрушений и аварий становится молния линейного типа, наиболее распространенного из всех. На сегодняшний день по сравнению с остальными типами подобных природных явлений она наиболее изучена. Линейные молнии можно разделить по месту возникновения. Они появляются и развиваются в пространстве между облаком и поверхностью земли. В основном именно такие разряды воздействуют на наземные объекты. Разряды электричества возникают в атмосфере из-за разности потенциалов между частями грозового облака, между облаками или между облаком и землей. Поэтому молния может также развиваться внутри облака или между разными облаками.
Направление развития линейных молний служит критерием для их разделения на нисходящие и восходящие. За счет развития лидера молнии от облака к земле или от земли к облаку происходит пробой зоны между ними. Молнии, чье развитие направлено из грозового облака вниз к земле, называются нисходящими. Восходящие же молнии развиваются в направлении к облаку от вершин заземленных конструкций. В абсолютном большинстве случаев причиной поражения возвышающихся на равнинной местности сооружений от 200 метров выступают именно восходящие молнии.
Стадии развития молнии
Молния переносит с облака на землю положительный или отрицательный заряд. Знак заряда определяет ее полярность. Молнии с отрицательным зарядом встречаются значительно чаще, и их параметры более подробно изучены. Отрицательная нисходящая молния развивается в три стадии, которые образуют компоненту. За первой компонентой, как правило, идут последующие. Их количество может достигать нескольких десятков.
Разряд молнии начинается при появлении лидера. Он оказывает тепловое, механическое и электрическое воздействие на объекты, через которые проходит. Лидер молнии состоит из канала, головки канала и стримерной зоны. Канал лидера молнии – это плазменное образование, через которое протекает ток. Канал прорастает, пробивая промежуток между облаком и землей. Он несет огромный потенциал в десятки мегавольт, а сила тока в нем исчисляется сотнями ампер. Величина распределенного по его длине заряда электричества достигает нескольких кулон. Так за миллисекунды происходит лидерная стадия развития молнии.
Далее следует наиболее опасный процесс наподобие короткого замыкания – главная стадия. Высокотемпературный проводящий канал замыкается на землю и провоцирует переходный процесс разряда протяженной заряженной системы, созданной лидером. На этой стадии импульс тока может протекать по каналу за сотни микросекунд с амплитудой уже в несколько сотен килоампер. Скорость его распространения соизмерима со скоростью света. Главную стадию сопровождают световые вспышки, яркое свечение и раскаты грома. Гром вызывают колебания воздуха, когда нагретая молнией волна воздуха сталкивается с холодной.
На финальной стадии канал молнии продолжает переносить заряд к земле, но менее интенсивно. Тем не менее, для этой стадии характерна большая длительность тока, которой, в основном, обусловлено термическое воздействие молнии.
Мощную разрушительную силу атмосферного электричества трудно недооценить. С этим связана целесообразность установки специальных систем – систем молниезащиты и заземления.
Какого цвета бывают?
Сложно не заметить, что молнии бывают разными по цвету. Они могут быть желтыми, белыми, оранжеватыми, голубоватыми, красноватыми. Какой будет оттенок, зависит от состава атмосферы. Температура в канале молнии в пять раз выше, чем на Солнце, при таких условиях воздуху свойственно становиться голубым или фиолетовым. Поэтому заряды вблизи от нас при чистом воздухе мы видим синеватыми. На более далеком расстоянии мы видим их белыми, на еще более далеком — желтыми. Но здесь дело не в самой молнии, а в том, что голубые цвета рассеиваются. При большом количестве пыли в воздухе цвет становится оранжевым. При наличии капель воды становится красной.
Как определить расстояние до молнии по грому?
Установить расстояние до грозы по грому можно приблизительно. Для этого засекается, сколько секунд проходит между звуком грома и вспышкой молнии. Необходимо учитывать скорость звука – около 300 метров в секунду. Так, 3 секунды – это примерно 1 км до грозы.
Расстояние до молнии
Выполнение нескольких замеров позволяет узнать, приближается или удаляется гроза по отношению к наблюдателю. Важно помнить о том, что молния растягивается на несколько километров. Если при отсутствии грома видны разряды молнии, значит, гроза находится на расстоянии более 20 км.
Как часто возникают молнии?
Есть мнение, что зимой молний не бывает. На самом деле бывают, но крайне редко. Объяснение в том, что поверхность земли прогревается не так сильно. Нет условий для формирования восходящих воздушных потоков. Однако, в последнее время из-за глобального потепления, молнии появляются чаще.
Согласно новым данным, полученным при помощи космических спутников, частота ударов молнии на планете составляет 44 в секунду плюс-минус пять.
За год — примерно 1,4 миллиарда зарядов, примерно четверть из них бьет по земле.
По молнии можно высчитать, как далеко находится гроза. Для этого нужно засечь время между вспышкой и раскатом грома. Отталкиваясь от скорости звука — 300 метров в секунду, мы понимаем, что пауза в три секунды означает, что грозовой фронт примерно в километре. Если засечь дважды, то можно понять, приближается гроза или удаляется. Если видно всполохи, но не слышно грома, значит, расстояние составляет более 20 километров.
Частота молнии
Ранние исследования показывали, что молния ударяет примерно 100 раз в секунду на территории нашей планеты. Но спутники позволяют наблюдать за самыми удаленными или труднодоступными местами на Земле.
Частота молнии (на квадратный километр за год)
Новые данные указывают на 44 плюс-минус 5 ударов молнии в секунду. Это значит, что за год случается около 1,4 миллиарда электрических разрядов. Из них примерно 25% ударяют в землю, а остальные 75% вспыхивают среди облаков.
Какая опасность?
Самые опасные последствия — это попадание в человека, деревья, дома, машины и другие объекты. Когда электричество бьет в песок или горную породу, может сформироваться фульгурит. Под воздействием тока материя плавится и быстро застывает. Если это песок, то будет создано стекло — полые трубочки произвольной формы. Обнаружить их очень сложно, попасть в такую зону опасно.
Если шаровая молния попадет в дерево или деревянный объект, например, кровлю здания, то произойдет возгорание. При попадании обычной в закрытый автомобиль ничего страшного не произойдет, ток сразу же уйдет в землю, он не сможет проникнуть в салон. Людей чаще всего поражает в голову или в грудную клетку. От этого на коже остаются следы зигзагообразной формы. У них есть название — фигуры Лихтенберга.
Попадание опасно для жизни и здоровья, поэтому его нужно всячески избегать.
Последствия молнии
Молния оставляет за собой большое количество разных следов, в зависимости от места, куда ударяет разряд, а также его мощности. Рассмотрим следующие проявления молнии:
- образование фульгуритов;
- попадание в землю;
- попадание в деревья, дома и прочие объекты;
- попадание в автомобили;
- попадание в человека.
Фульгурит – это вещество, которое образуется при попадании электрического разряда в песок или любую горную породу. По сути, определенное количество песка просто плавится и застывает под кратковременным воздействием высокой температуры.
Фульгурит
Обнаружить фульгуриты непросто. Обычно они встречаются на горных вершинах или в областях, где грозы считаются частым явлением. Попадая в залежи песка, молния образует из него трубочки произвольных форм, полые внутри. Фактически они получаются стеклянными.
Между песчаными частицами всегда есть влага и воздух. Мощный удар их быстро нагревает до высоких температур, расширяет, в результате чего и появляются эти трубочки всевозможных размеров и форм. Затем они моментально охлаждаются.
Очень редко разряды молнии попадают именно в землю, поскольку для них предпочтительнее максимально короткий и доступный путь. Но в случае попадания на поверхности остается углубление, от которого в разные стороны уходят витиеватые линии, напоминающие молнию по форме.
След от молнии на земле
Возвышаясь над другими объектами, деревья чаще всего привлекают к себе молнию. В большинстве случаев они сгорают, причем моментально. Если же в дерево попадает шаровая молния, она поджигает его изнутри. При попадании в здание молния зачастую повреждает кровельную часть и тоже может вызвать возгорание.
Молния ударила в дерево
Если разряд угодит в закрытое транспортное средство, например, автомобиль, то быстро распространится по металлическому корпусу и уйдет в земную поверхность. Считается, что авто – безопасное место, в котором можно переждать непогоду, так как молния не попадает внутрь салона. Однако последствия прямого попадания все равно серьезные.
Молния ударила в авто
Попадание разряда молнии в человека непредсказуемо. Оно сравнимо удару электрическим током, но напряжение при этом в разы выше. Чаще всего молния поражает грудную клетку или голову.
Фигуры Лихтенберга
На теле остаются особенные следы, которые напоминают молнию по форме – их называют фигурами Лихтенберга. Такой след остается в результате повреждения кровеносных сосудов. Удар молнией крайне опасен, поэтому в случае грозы следует принять все необходимые меры безопасности.
Если ли польза?
Электрический ток очищает воздух от загрязнений, каждому знакомо ощущение чистоты после грозы. Другое полезное действие — стимул к накоплению азота, это естественное удобрение для растений.
Есть отдельная научная дисциплина — громовая энергетика. Специализирующиеся на ней ученые ищут способы применения громовой энергии. Она классифицируется как возобновляемый источник, поэтому необходимы способы направления ее в электрические сети. В большинстве стран электроснабжение обходится очень дорого, причем не только материально. Добывающие станции наносят огромный вред природе. Если использовать грозовую активность, то неиссякаемым источником станет сама природа. В данный момент проблема в том, что появление грозы и ее продолжительность невозможно предсказать с высокой точностью.
Можно ли использовать энергию молнии?
Существует специальный термин – грозовая энергетика. Это способ, при помощи которого энергия молнии «собирается» и направляется в электрические сети. Эта энергия принадлежит к числу альтернативных возобновляемых источников.
Электросети
Потенциал использования энергии молнии огромен. Ее запас бесконечный – он решит проблему дорогостоящего электричества и снизит ущерб, который сейчас наносится экологии планеты. В настоящее время ведутся разработки экспериментальных установок для захвата молнии, изучается грозовая активность.
Но есть у данного способа энергопотребления и свои минусы. Сложно предсказать, где и когда будет гроза. Кроме того, вспышка длится доли секунды, поэтому требуется мощное дорогое оборудование.
Правила безопасности во время грозы
При нахождении на улице во время грозы необходимо:
- отойти подальше от деревьев, столбов и других высоких объектов. Напряжение при ударе разойдется по сторонам;
- убрать зонт, любые предметы длинной формы или сделанные из металла;
- выключить телефон;
- уйти подальше от водоема;
- при нахождении на открытой местности нужно присесть и склонить голову к коленям, придать телу максимально низкое положение.
В помещении тоже нельзя считать себя в безопасности. Следует выключить телефон и все электроприборы, перекрыть газ, закрыть окна.
История изучения
Наблюдать молнию люди могли еще с древних времен, но длительное время этому явлению не было объяснения. Изначально считалось, что вспышки в небе – результат деятельности богов. Еще древнегреческие философы подметили, что молния поражает высокие объекты.
Значимый вклад в изучение молнии сделали мореплаватели. В открытом море электрические разряды оказались еще мощнее. Связь между молнией и электричеством была выдвинута в 17-18 веках, в период развития физики.
Молния в море
Наиболее подробно такую гипотезу описал в своих исследованиях Бенджамин Франклин. В 1750 он представил научный труд, в котором был описан известный нынче эксперимент по определению электрической природы молнии.
Суть опыта состояла в запуске воздушного змея во время грозы. При этом к змею крепился стержень из меди, а к тросу – металлический ключ. Цель эксперимента – доказать электрическую природу молнии.
Опыт Бенджамина Франклина, иллюстрация
Для подтверждения гипотезы молния должна ударить в змея, пройти по тросу и оставить след на ключе. Опыт Франклин провел в июне, позаботившись о громоотводе. Стоит сказать, что он прошел успешно и подтвердил все догадки физика.
В 20-м веке ученые открыли необычные виды молнии (спрайты, джеты, эльфы), которые возникают в верхних слоях атмосферы. В настоящее время исследования молнии проводятся при помощи спутников.
Оборудование для защиты
В первую очередь в защите нуждаются самолеты. Корпус каждого из них покрыт специальной экранирующей металлической сеткой, она проводит электричество, но не позволяет ему попасть внутрь, навредить оборудованию и людям. Есть и дополнительная защита, она установлена на каждом приборе и является гарантией того, что он не выйдет из строя. При попадании пассажиры на борту могут услышать громкий звук, но иногда его не слышно. Перед тем, как сдать самолет в использование, его всячески испытывают, один из тестов — симуляция разных видов молнии.
На домах и оборудовании устанавливают грозозащиту. Она не может уберечь от удара, ее назначение — в сохранении оборудования от статического электричества и напряжения. Когда появляется разница в напряжении, срабатывает защитный диод, благодаря этому провода заземляются.
Люди научились противостоять молниям, но так и не могут объяснить во всех деталях природу их появления. Но наука сделала большой прорыв. Знание основывалось на наблюдениях. Еще в древности, когда люди относили молнию к божьей каре, они подметили, что бьет она преимущественно в высокие объекты. О связи с электричеством стало известно только в 17 веке. На тот момент наиболее достоверную гипотезу выдвинул Б.Франклин. Его научный труд датирован 1750 годом, в нем описывается эксперимент, в ходе которого в грозу запускали воздушного змея с металлическим стержнем. Именно так была доказана электрическая природа. В 20 веке ученые уже знали, почему появляется молния, а также открыли их необычные разновидности. Сейчас изучение проводится через спутники.
Как защищают самолеты от молнии?
Весь корпус самолета защищен специальной оболочкой, внутри которой содержится экранирующая сетка из металла. Таким образом, при ударе молнией оболочка проводит ток, но предотвращает проникновение электрического разряда внутрь самолета. Находящиеся внутри люди и оборудование остаются в безопасности.
Разрядники на крыле самолета
Также все техническое оснащение самолета оборудовано дополнительной защитой от электрических разрядов. Попадание молнии приходится на нос самолета, разряд продвигается к крыльям и хвосту. Пассажиры и экипаж могут во время удара услышать громкий звук, но так происходит не всегда.
Интересный факт: перед тем, как самолет сдается в эксплуатацию, он проходит тщательную проверку. Один из ее этапов – симуляция попадания молнии.
Чем опасна молния?
- Молния опасна тем, что имеет чрезвычайную разрушительную силу.
- Если же говорить об опасности для людей, то молния особенно небезопасна. Ток с высокой силой мгновенно проходит через человеческое тело, устремившись в землю и вызывает самые непредсказуемые повреждения, которые часто завершаются смертью. Как правило, у разряда небольшая толщина, и если при прохождении его через тело жизненно важные органы не затрагиваются, то все складывается хорошо. В ситуации, когда разряд проходит через сердечно-сосудистую систему, через мозг или определенные мышцы, наступает паралич или же моментальная смерть.
Вид молнии
Каждый видел, что свечение представляет собой не прямую линию, а ломаную.
Из-за чего молния появляется в таком виде? Процессу образования подобной ломаной способствует форма проводящего канала, представленная в виде ступенек. Каждая из подобных ступенек – это место, где движущиеся молекулы останавливаются из-за столкновения с воздухом и изменяют направление.
Молния – конденсатор, диэлектриком которого является воздух, а обкладки – земля и облака.
Емкость подобного конденсатора мала, но зато напряжение в нем колоссальное и может достигать миллионов вольт. Причем во время свечения то, что мы видим с земли, – это не одна молния, а несколько разрядов, каждый из которых длится миллионные доли секунды.